Lattice Covering by Semicrosses of Arm Length 2

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering lattice points by subspaces

We find tight estimates for the minimum number of proper subspaces needed to cover all lattice points in an n-dimensional convex body C, symmetric about the origin 0. This enables us to prove the following statement, which settles a problem of G. Halász. The maximum number of n-wise linearly independent lattice points in the n-dimensional ball rB of radius r around 0 is O(rn/(n−1)). This bound ...

متن کامل

Determination of Stature from Upper Arm Length in Medical Students

Introduction: In order to make a dimensional proportion between human and equipment or environment, anthropometric data bank is essential. Anthropometry has an important role in industrial management and ergonomic design. This information is needed to be collected regularly in every society. The purpose of this study was to determine arm length to height ratio according to gender in adult...

متن کامل

Covering convex bodies by cylinders and lattice points by flats ∗

In connection with an unsolved problem of Bang (1951) we give a lower bound for the sum of the base volumes of cylinders covering a d-dimensional convex body in terms of the relevant basic measures of the given convex body. As an application we establish lower bounds on the number of k-dimensional flats (i.e. translates of k-dimensional linear subspaces) needed to cover all the integer points o...

متن کامل

N ov 2 00 4 Local Covering Optimality of Lattices : Leech Lattice versus Root Lattice

We show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice E8. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the Delone subdivision of E8. The new lattice yields a sphere covering which is more than 12% less dense than the form...

متن کامل

Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

Let d and k be integers with 1 ≤ k ≤ d − 1. Let Λ be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in Λ ∩ K. In particular, our results imply that the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional n ×...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1991

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(13)80093-5